A Multifaceted Exploration of Plant-Microbe Interactions
Plants host diverse ecological niches that foster the growth of numerous microorganisms — bacteria, fungi, and viruses—forming the intricate plant microbiome1. These microbial communities establish complex relationships with plants, engaging in diverse plant activities and bolstering environmental stress resilience2. Today, we're excited to briefly delve into the microbial types and the role of metabolites in shaping plant-microbe interactions.
Plant-microbial interactions3
Microbial Diversity in Plant Interactions
Microbial types span plant rhizosphere, endophytic microbes in roots, above-ground endophytes, and phyllosphere, each wielding varied influences on plants. Beneficial microbial allies like rhizobia, mycorrhizal fungi, endophytes, and epiphytes play pivotal roles. Rhizobia4 and mycorrhizal fungi5 aid nitrogen fixation in legumes and non-legumes, vital for protein synthesis and plant growth. Endophytes synthesize active compounds within plants1, while epiphytes support normal growth under heavy metal stress6. Prompted by these allies, plants produce VOCs (volatile organic compounds) fortifying resistance to stressors7 and enhancing the release of plant volatiles8.
Amid these interactions, plants also grapple with harmful microbes causing severe diseases like phytophthora infestans in potatoes, tobacco mosaic virus, and puccinia striiformis in wheat. However, certain harmful microbes are pivotal for establishing plant root microbiota.
Microbial Diversity in Plants
Plant species |
Microorganism |
Presence site |
Function |
Ref. |
Arabidopsis thaliana |
Enterobacter sp. SA187 |
root endophytic |
Participate in sulfur metabolism and improve the salt tolerance |
[9] |
Tomatoes |
Amycolatopsis, Penicillium, Bacillus |
rhizosphere |
lower absolute abundance of R. solanacearum |
[8] |
Chili |
Pseudomonas fluorescens PDS1, Bacillus subtilis KA9 |
rhizosphere |
efficiency against Ralstonia solanacearum |
[10] |
Rice |
Stenotrophomonas |
endophytic |
negative interaction with Cd content |
[11] |
Salix atrocinerea |
Pantoea sp. AV62, Rhodococcus erythropolis AV96 |
root endophyte |
resulted in higher As and Pb concentrations in both roots and leaves |
[12] |
Plant Metabolites Influencing Plant-Microbe Dynamics
Plant metabolomics profoundly influence rhizospheric microbial composition through root secretions, influenced by plant genotype and domestication. Rhizospheric microbes vary among different plant genotypes due to distinct substances in root exudates—sugars, amino acids, organic acids, nucleotides, fatty acids, hormones, and secondary metabolites. These exudates intricately modulate rhizospheric nutrient effectiveness.
Plant metabolites influencing rhizospheric microbial composition
Plant species |
Microorganism |
Metabolites |
Function |
Ref. |
Salix myrtillacea |
Azotobacter, Pseudomonas |
Fraxetin, sinapyl aldehyde, glycyl-L-tyrosine, l-glutamine |
improve willows drought resistance |
[13] |
Rice and wheat |
- |
Malate, citrate, and γ-amino butyric acid |
improve plant production |
[14] |
Tea plants |
Flavobacterium, Myriangium, Parabacteroides |
Eophylline, epigallocatechin gallate |
Suppress prevalent fungal pathogens. |
[15] |
Avena barbata |
- |
Nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic acid |
Provide an attractive direction for rhizosphere microbiome |
[16] |
Tomato |
Streptomyces, Bacillaceae, Burkholderiaceae |
Glutamic acid |
Glutamic acid directly modulates the microbiome composition |
[17] |
Soybeans |
formosus LHL10, Sphingomonas sp |
Abscisic acid, salicylic acid and gibberellins |
Enhance the production of the endogenous phytohormones |
[18] |
Human Interventions and the Microbial Equilibrium
Human interventions like pesticide application can disrupt the delicate balance of the plant microbiome. For instance, excessive imidacloprid use reduces pepper root microbes, hindering growth and disrupting secondary metabolite synthesis (flavones, phenolic acids, phytohormones) 19. These complex interactions between plants and microorganisms focus significantly on establishing core microbial communities, crucial in addressing breeding-related concerns.
Conclusion:
Unraveling the intricate dance between plants and their microbial allies holds the key to a harmonious future for agriculture. By deciphering the chemical conversation of root exudates and harnessing the power of beneficial microbes, we can cultivate biofertilizers and biopesticides tailored to specific plant needs, breeding crops that thrive in the face of adversity. MetwareBio, at the forefront of this agricultural revolution, empowers researchers and farmers alike with comprehensive metabolomics and microbiome sequencing services, reach out to get started.
References
1. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020 Nov;18(11):607-621. doi: 10.1038/s41579-020-0412-1
2. Ge J, Li D, Ding J, Xiao X, Liang Y. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review. Environ Res. 2023 Apr 1;222:115298. doi: 10.1016/j.envres.2023.115298
3. De Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020 Apr 17;368(6488):270-274. doi: 10.1126/science.aaz5192
4. Schulte CCM, Ramachandran VK, Papachristodoulou A, Poole PS. Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum. mSystems. 2022 Feb 22;7(1):e0097521. doi: 10.1128/msystems.00975-21
5. Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty PE, Wipf D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza. 2021 Nov;31(6):655-669. doi: 10.1007/s00572-021-01054-1
6. Zhen Z, Yan C, Zhao Y. Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Environ Pollut. 2020 Jun;261:114232. doi: 10.1016/j.envpol.2020.114232
7. Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. J Exp Bot. 2022 Jan 13;73(2):529-554. doi: 10.1093/jxb/erab367
8. Magalhães DM, Lourenção AL, Bento JMS. Beneath the blooms: Unearthing the effect of rhizospheric bacteria on floral signals and pollinator preferences. Plant Cell Environ. 2023 Nov 23. doi: 10.1111/pce.14771
9. Andrés-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, de Zélicourt A, Bokhari A, Artyukh O, Alwutayd K, Rawat A, Shekhawat K, Almeida-Trapp M, Saad MM, Hirt H. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci U S A. 2021 Nov 16;118(46):e2107417118. doi: 10.1073/pnas.2107417118
10. Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel). 2022 Feb 16;11(2):404. doi: 10.3390/antiox11020404
11. Zheng Z, Li P, Xiong Z, Ma T, Mathivanan K, Praburaman L, Meng D, Yi Z, Ao H, Wang Q, Rang Z, Li J. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice. Chemosphere. 2022 Aug;301:134655. doi: 10.1016/j.chemosphere.2022.134655
12. Navazas A, Mesa V, Thijs S, Fuente-Maqueda F, Vangronsveld J, Peláez AI, Cuypers A, González A. Bacterial inoculant-assisted phytoremediation affects trace element uptake and metabolite content in Salix atrocinerea. Sci Total Environ. 2022 May 10;820:153088. doi: 10.1016/j.scitotenv.2022.153088
13. Kong X, Guo Z, Yao Y, Xia L, Liu R, Song H, Zhang S. Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. Sci Total Environ. 2022 Oct 20;844:157132. doi: 10.1016/j.scitotenv.2022.157132
14. Kawasaki A, Dennis PG, Forstner C, Raghavendra AKH, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR. Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiol. 2021 Dec 4;187(4):2279-2295. doi: 10.1093/plphys/kiab337
15. Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W, Lv T, Hu Y, Nie Y, Zheng X, Meng Q, Wang Y, Cernava T, Wang M. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res. 2022 Jul;39:49-60. doi: 10.1016/j.jare.2021.10.003
16. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018 Apr;3(4):470-480. doi: 10.1038/s41564-018-0129-3
17. Kim DR, Jeon CW, Cho G, Thomashow LS, Weller DM, Paik MJ, Lee YB, Kwak YS. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome. 2021 Dec 20;9(1):244. doi: 10.1186/s40168-021-01186-8
18. Shaffique S, Hussain S, Kang SM, Imran M, Kwon EH, Khan MA, Lee IJ. Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. Front Plant Sci. 2023 Jun 12;14:1188856. doi: 10.3389/fpls.2023.1188856
19. Li D, Zhou C, Wang S, Hu Z, Xie J, Pan C, Sun R. Imidacloprid-induced stress affects the growth of pepper plants by disrupting rhizosphere-plant microbial and metabolite composition. Sci Total Environ. 2023 Nov 10;898:165395. doi: 10.1016/j.scitotenv.2023.165395